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Abstract

We propose a methodology for the
design and implementation of sys-
tems that will learn to succeed where
in the past they have failed. Such
systems will know what they are
supposed to be doing, know when
they are succeeding and when they
are not, and be able make tar-
geted changes to their own mod-
ules to correct their failures. That
is, they will be self-monitoring, self-
correcting, and self-guiding learning-
and-reasoning systems, advanced ac-
tive learners able to decide what,
when, and how to learn. We also de-
scribe some of our pilot studies uti-
lizing this methodology.
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I Introduction

Imagine yourself at work in your office. You
expertly apply yourself to the many tasks at
hand, occasionally puzzling over a few unfa-
miliar matters and quickly dispatching them:
one you decide to discard as unimportant; an-
other you recognize as similar to one you dealt
with yesterday; a third you hand off to a col-
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league; a fourth you decide can wait until to-
morrow. Later, on the way home, your usual
route is clogged with unusually heavy traf-
fic, and you are unsure how to proceed, so
you call your spouse for advice. After dinner
your spouse suggests a game of cards, and in
particular a new game; after some explana-
tions of the rules, and a few questions, you
are ready to play, and soon become quite at
home with the new game, learning quickly
from your mistakes, determining in the pro-
cess which techniques from other card games
still apply, which need to be modified, and
which scrapped. Muddling through seems to
be a human trademark: we get the job done
by hook or crook, we ask for help, or we grace-
fully bow out. Yet computers are notoriously
bad at this.

We propose a methodology for the design
and implementation of systems that muddle
through, and that can learn to succeed where
in the past they have failed. Such systems
will know what they are supposed to be do-
ing, know when they are succeeding and when
they are not, and be able make targeted
changes to their own modules to correct their
failures. That is, they will be self-monitoring,
self-correcting, and self-guiding learning-and-
reasoning systems, advanced active learners
able to decide what, when, and how to learn.

We believe this approach can help us move
forward on an issue that has plagued research
in artificial intelligence since its inception: al-
though we know how to build systems that
perform at a human (or near-human) level
in certain highly constrained domains (such
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as chess, or medical diagnosis), we have not
discovered how to endow automated systems
with human-level common sense, i.e., the abil-
ity to muddle through when things do not fit
into neatly prescribed patterns. Yet this is not
due to lack of attempts to address this prob-
lem. What then is missing? We propose that
a large part of the problem is the historical
separation of AI into distinct subfields, and
in particular the subfields of machine learn-
ing and of automated reasoning, which have
carried on in almost complete isolation from
each other.

In contrast, human agents routinely use learn-
ing and reasoning in concert, and especially
when faced with the unexpected or unfamil-
iar. When facing an anomalous situation, a
human (i) notices the anomaly, (ii) assesses
it in terms of type and importance, and (iii)
adopts a course of action with respect to it.
We call this process the metacognitive loop
(MCL), and it involves both learning and rea-
soning, in various ways.

It is reasonable, then, to suppose that an
automated form of MCL might endow au-
tomated systems with considerable robust-
ness. Let us dub such a hypothesized sys-
tem ReGiKAT, as it would employ REason-
Gulded Knowledge Acquisition and Transfer.
Our long-range aim is to investigate how far
the MCL approach can go toward building
a viable ReGiKAT (or Regi for short), and
where its limits may be. MCL will allow
systems the needed autonomy to function in
domains where human supervision cannot be
constantly supplied, in part by facilitating the
transfer of knowledge learned in one domain
to other domains. In fact, this is a prime ex-
ample of MCL at work, since what works in
one domain may—or may not—work in an-
other, and failures in the second domain are
anomalies until they are corrected by further
learning and/or reasoning. The second do-
main can even be a version of the first domain
but at a later time, or in a different context.

IT The most important problem in
Al

Brittleness is arguably the single most im-
portant problem in A, and perhaps in (com-
puter) systems overall: a system designed for
specific tasks fails utterly when faced with
an unanticipated perturbation that takes it
even slightly outside those task specifications.
Yet humans perform admirably under such
perturbations, easily adjusting to most minor
changes as well as to many major ones.

We define a perturbation as any change,
whether in the world or in the system it-
self, that impacts performance. Perturba-
tion tolerance, then, is the ability of a sys-
tem to quickly recover—that is, to re-establish
desired/expected performance levels—after a
perturbation. To achieve this, a perturbation-
tolerant system should not only notice when
it isn’t behaving how it ought or achieving
what it should, but be able to use this knowl-
edge to make targeted alterations to its own
modules. Such changes can be as simple as re-
calibrating its sensors, or as complex as train-
ing new (or retraining old) behaviors, chang-
ing its rules of inference, learning new words
and concepts, even adopting different basic
ontologies in different circumstances.

While it may often be possible to anticipate
the kinds of problems a system will face over
its lifetime, and build in specific mechanisms
to handle these issues, we doubt this will
prove, in the long run, to be the most effective
strategy. We believe, in contrast, that efforts
should be aimed at implementing mechanisms
that help systems help themselves. The goal
should be to increase their agency and free-
dom of action in responding to problems, in-
stead of limiting it and hoping that circum-
stances do not stray from the anticipations
of the system designer. We should be creat-
ing self-aware, self-guided learners. Indeed,
we believe that such metacognitive skills are
the key to achieving near-human-level (or, in-
deed, any useful kind of) perturbation toler-
ance. Metacognitive learners would be ad-
vanced active learners, able to decide what,
when, and how to learn.



An MCL-based system will know what it is at-
tempting to do, so that it can determine when
things are not going well, instead of blindly
following its programming over the prover-
bial cliff—as did one of the DARPA Grand
Challenge entries which kept trying to drive
through a fence it could not see. If that sys-
tem had known it was supposed to make for-
ward progress and noticed that it was not do-
ing so, this would have been the first step to
overcoming the problem. Or consider the case
of the satellite given the command to turn
and look at some object away from Earth,
but not told to turn back to Earth when fin-
ished. Once the satellite turned, there was
no way to feed it further commands, and the
satellite was nearly lost. In contrast, a system
that had general expectations for its operation
(frequent communication from Earth), based
on the sort of system it was, might have been
able to use this knowledge to recover from
such mistakes. More generally, MCL will al-
low systems the needed autonomy to function
in domains where human supervision cannot
be constantly supplied.

Our general strategy, then, in working toward
this goal has been to equip artificial agents
with the ability to notice when something is
amiss, assess the anomaly, and guide a solu-
tion into place (the NAG cycle). This ba-
sic strategy of self-guided learning (i.e., the
metacognitive loop) involves the system mon-
itoring, reasoning about, and, when neces-
sary, altering its own decision-making com-
ponents. Indeed, in our view this is largely
what perturbation-tolerant commonsense rea-
soning consists in, rather than in finding spe-
cial clever solutions to thorny problems.

Although it is of course the case that MCL
will be most effective when specific solutions
to problems can be implemented, it is worth
noting that performance in the face of unex-
pected perturbations can be enhanced even
when one cannot figure out exactly what
is wrong, or what to do about it, so long
as one is able to realize that something is
wrong, and ask for help, or use trial-and-
error, or even give up and work on something
else. In our ongoing work, we have found

that including an MCL component can en-
hance the performance of—and speed learning
in—different types of systems, including rein-
forcement learners, natural language human-
computer interfaces, commonsense reason-
ers, deadline-coupled planning systems, robot
navigation, and, more generally, repairing ar-
bitrary direct contradictions in a knowledge
base.

IIT A sketch of the general MCL
algorithm: the key role of
expectations

The primary end result of the MCL approach
is systems with continually evolving—and
improving—decision-making components. To
achieve this, the knowledge base (K B) of the
system continually evolves as new beliefs are
asserted (whether due to inference, percep-
tion, or other processes) and old beliefs are re-
tracted (or rather, simply not promoted to the
next time-step—we speak of these as being
disinherited). In addition, MCL systems can
retrain or otherwise adjust their non-symbolic
components, or even create new components
and bring them online.

Here is a high-level sketch of how MCL plays
out in algorithmic terms. As noted above, the
core of MCL involves three major processes:
noting anomalies, assessing them, and guid-
ing solutions into place. Anomalies arise from
expectations: an anomaly is an expectation
that is not met. This can include, however,
tacit, subsymbolic, or implicit expectations.
That is, a given situation might trigger the
response “X unexpected” even if there was no
explicit representation of the expected coun-
terpart, =X, beforehand.

An expectation can be represented in the form
Exp(E), or as a simple belief E. The following
default rule relates simple beliefs and expecta-
tions. It says simply that if you ezpect E, you
can generally come to believe E, unless it is
contradicted by other beliefs or observations.

t : Exp(E)
t+1: E

Condition for above rule: None of the fol-



lowing formulas belong to the KB at time t:
—E, Obs(—E), Obs(F) where FE is —F.

IV How MCL helps

MCL can enhance performance for two re-
lated reasons. First, it can monitor and influ-
ence on-line performance even without mak-
ing any basic changes or improvements to
action-producing or decision-making compo-
nents. An example of this would be noticing
that progress on a task has stopped (i.e. that
the system is “stuck”) and directing specific
efforts to getting “un-stuck”, or simply mov-
ing on to a different task. Second, and more
powerfully, MCL can direct the system to ac-
tively learn something that it (apparently)
doesn’t know, or has gotten wrong. Since
there is evidently a great deal that can be
learned, depending on the system and the sce-
nario, MCL in this guise is best understood
as a principled method of organizing and con-
trolling learning—deciding whether to learn,
what to learn, with what methods, and (im-
portantly) when to stop. An example of this
latter ability would be noticing that a problem
in processing a given user command appears
to be caused by ignorance of a certain word,
and taking steps to learn the unknown word.

Both of these abilities are crucial to improv-
ing the perturbation tolerance of a given sys-
tem, and they generally work in concert.
Thus, for instance, we have shown that an
MCL-enhanced reinforcement learner can—
by choosing when to ignore anomalies, when
to make minor on-line adjustments, and when
to order re-learning of its action policy—
always perform at least as well as, and in
many cases significantly out-perform, a stan-
dard reinforcement learner when operating in
a changing world [4].

V Implemented MCL systems

MCL-enhanced reinforcement learning. In a
simple demonstration of this idea, we built
a standard reinforcement learner (we tested
Q-learning [19, 20}, SARSA [18] and Prior-
itized Sweeping [13]), and placed it in an

8x8 world with two rewards—reward 1 (rl)
in square (1,1) and reward 2 (r2) in square
(8,8). The learner was allowed to take 10,000
actions in this initial world, which was enough
in all cases to establish a very good albeit non-
optimal policy. In turn 10,001, the values of
the rewards were abruptly changed. See [4]
for a complete account of the experimental
design and results.

We found that the perturbation tolerance (i.e.
the post-perturbation performance) of stan-
dard reinforcement learners varied consider-
ably, and was negatively correlated to the
degree of the perturbation—the bigger the
change, the worse they did. Roughly speak-
ing, the problem was that such learners in ef-
fect have to unlearn what they have learned
in order to then learn something new; they
cannot make the decision that what they
have learned is no longer working and that
they should jettison it and start from scratch.
Thus they go through a potentially slow un-
learning curve before they can begin learning
afresh.

However, even a very simple MCL enhance-
ment to reinforcement learning, that simply
discards what it has learned after noticing a
few discrepancies, and starts over, perform
significantly better than the non-MCL ver-
sions. Moreover, a more sophisticated ver-
sion of MCL, that generates and monitors ex-
pectations for performance (average reward
per turn, average time between rewards, and
amount of reward in each state), and chooses
between the available methods (of doing noth-
ing, making an on-line adjustment, and re-
learning its policy, in light of its assessment
of the anomalies) performed best overall.

MCL-enhanced navigation. Another agent
that we have been developing uses a neural
net for navigation; however it also has a mon-
itoring component that notices when naviga-
tional failures (such as collisions) take place,
and records these and their circumstances. It
is then able to use this information to assess
the failures and make targeted changes to the
neural net, including starting with a different
set of weights, or re-training on a specific set



of inputs. The agent exhibits better behav-
ior while training, and also learns to navigate
effectively more quickly [11].

Although both the above systems are rela-
tively simple, they do illustrate the ways in
which self-monitoring and control can help
systems maintain performance in the face of
changes, and, more particularly, they demon-
strate cooperation between the ability to ini-
tiate new actions, and the ability to initiate
new learning. Still, one has to expect that as
the scenarios, and the systems themselves, be-
come more complex, more sophisticated and
expressive reasoning mechanisms will be re-
quired to usefully assess and appropriately
respond to anomalies. And these reason-
ing mechanisms must not only be able to be
used in the service of perturbation tolerance,
but must themselves be perturbation toler-
ant. It is with such considerations in mind
that we have been working on perturbation-
tolerant logical reasoners, based on active
logic [8, 9, 10].

The challenge of dealing with a dynamic world
is especially acute for symbolic reasoners,
for as the world changes, the reasoner will
inevitably encounter conflicts—often in the
form of direct contradictions'—between the
information it gathers from the world, and the
beliefs resident in its knowledge base (KB).

As argued in [14], contradictions of some sort
are practically inevitable; but only direct con-
tradictions need be “visible” to a reasoning
system. This is the thrust of much of our
past work on time-situated commonsense rea-
soning. And it lends itself nicely to noting
anomalies: when a direct contradiction (e.g.,
between an expectation and an observation)
appears in the KB, something is amiss.

Our formal approach to effective reasoning in
the presence of contradictions—active logic—
is motivated in part by the observation that
all reasoning takes place step-wise, in time.
This allows an agent to maintain control over,
and track, its own reasoning processes.

L “Direct contradiction” here means a conflict be-
tween P and —P, as opposed to more general incon-
sistencies which can be very hard to detect.

Each “step” in an active logic proof itself
takes one active logic time-step; thus infer-
ence always moves into the future at least one
step and this fact can be recorded in the logic.
In active logic, beliefs are held at times, and
the KB is therefore considered to be a tempo-
rally embedded and evolving set of formulas.

By endowing an active logic with a “conflict-
recognition” inference rule such as that in
(V), direct contradictions can be recognized
as soon as they occur, and further reasoning
can be initiated to repair the contradiction,
or at least to adopt a strategy with respect
to it, such as simply avoiding the use of ei-
ther of the contradictands for the time being.
The Contra predicate is a meta-predicate: it
is about the course of reasoning itself (and yet
is also part of that same evolving history).

i : P, —P
i+1 : Contra(P, —-P, i)

The idea then is that, although an indi-
rect contradiction may lurk undetected in the
knowledge base, it may be sufficient for many
purposes to deal only with direct contradic-
tions. Sooner or later, if an indirect contra-
diction causes trouble, it may reveal itself in
the form of a direct contradiction.

These temporal and metacognitive aspects
make active logic systems more flexible than
traditional AI systems and therefore more
suitable for reasoning in noisy, dynamic and
inconsistent environments. Together with
negative introspection (the ability to know
what is currently not in the KB), a robust
ability to continue to reason normally as wifs
are added, changed or deleted from its knowl-
edge base, and the ability to initiate exter-
nal actions (see [16] for details), these features
make it a good candidate to provide the sym-
bolic world-reasoning and meta-reasoning re-
quired for a real world system [6, 17].

MCL-enhanced human-computer dialog. One
of the most important application areas for
active logic has been natural language human-
computer interaction (HCI). Natural lan-
guage is complex and ambiguous, and com-
munication for this reason always contains an
element of uncertainty. To manage this un-



certainty, human dialog partners continually
monitor the conversation, their own compre-
hension, and the apparent comprehension of
their interlocutor. Both partners elicit and
provide feedback as the conversation contin-
ues, and make conversational adjustments as
necessary.

We contend that the ability to engage in such
meta-language (asking for help with or ad-
vice about language), and to use the results
of meta-dialogic interactions to help under-
stand otherwise problematic utterances, is the
source of much of the flexibility displayed
by human conversation [15]. Although there
are other ways of managing uncertainty (and
other types of uncertainty to be managed),
we have demonstrated that improved perfor-
mance can be achieved by enhancing exist-
ing HCI systems with the ability to engage in
meta-reasoning and meta-dialog [3, 12].

A recent advance we have made along these
lines was to enhance the ability of our HCI
system to more accurately assess the nature
of dialog problems, and to engage in meta-
dialog with the user to help resolve the prob-
lem. For instance, if the user says “Send the
Metro to Boston”, the original system would
have responded with the unhelpful fact that it
was unable to process this request. Our sys-
tem, in contrast, notices that it doesn’t know
the word ‘Metro’, and will instead request
specific help from the user, saying: “I don’t
know the word ‘Metro’. What does ‘Metro’
mean?” Once the user tells the system that
‘Metro’ is another word for ‘Metroliner’, it
is able to correctly implement the user’s re-
quest [3, 12]. It can use these same methods
to learn new commands, so long as the new
command can be explained in terms of (in-
cluding being compounded from) commands
it already knows. The system is currently in-
tegrated with a simulated home management
domain, where it can process—and interac-
tively resolve mistakes in—user commands,
thereby allowing the user to control lights, a
digital video recorder, a pool heater; and to
play chess.

VI New domain

As noted above, we have built and tested sim-
ple pilot versions of MCL in many special-
ized domains: reinforcement learning, natural
language dialog, simbot navigation, and com-
monsense (nonmonotonic) reasoning How-
ever, what we propose now is to amplify the
domains we have been using so that they
are more complex and more dynamic; require
multiple learning-modalities (not just RL, but
also neural nets and other inductive learners,
etc.); and include real-time performance re-
quirements. This will allow a more thorough
testing of the MCL approach.

The domain we have chosen for our initial,
more sophisticated version of Regi is the
multi-player tank game Bolo [7]. The ba-
sic idea behind Bolo is fairly straightforward:
each player has a tank in a 2-dimensional en-
vironment, based on an island (surrounded by
water, and only accessible by boat), with the
following terrain types: roads, grass, swamp,
rubble, craters, water and walls. The ter-
rain can be changed at run-time by explod-
ing mines to create craters, by shooting at
walls to create rubble, and by using trees to
build roads, bridges, or walls. There are bases
for refueling, and pillboxes that shoot at un-
friendly tanks. Pillboxes can be captured and
made “friendly”, and friendly pillboxes can be
picked up and moved around. The object of
the game is to capture all the pillboxes and
bases, before the other players do.

Bolo has several characteristics that make it
a good choice for our research. The first is
that one has complete control over the start-
ing terrain configuration (the “map”), so that
it can be made quite simple, or quite complex,
and of course an agent can be trained in one
scenario and tested in another. The second
is that, although it is designed to be a multi-
player game, it can be played in single-player,
or “practice” mode. Furthermore, it has both
real-time constraints, as well as the need for
higher-order planning. Thus, Bolo can be ad-
justed to be very easy, or very complex, with
many gradations in between.

Performance metrics for perturbation-tolerant



systems. In previous work, we developed
a method of measuring the complexity of
an environment, including its variability and
volatility—the degree to which it changes
from place to place and over time—that is
directly applicable to the Bolo domain [1, 2].
This measure of complexity can be easily com-
bined with task-based performance measures
(e.g. task completion over time) to measure
the ability of the agent to deal with increas-
ing degrees of environmental complexity and
change.

VII Comparison with Current
Technology

Many techniques under the general topic of
reinforcement learning [18], such as neuro-
dynamic programming [5], have been devel-
oped for acting under uncertainty. However,
these techniques are very different from the
proposed work in that they focus on action
selection, not symbolic reasoning, and adapt
to non-stationarity only by continually train-
ing. The latter requires continual exploration,
or deviation from the optimal action pol-
icy, whereas MCL systems act optimally until
they notice that something is wrong and then
take remedial actions focused on the problem
at hand.

What is distinctive about MCL is that it
makes it possible to adapt learning and rea-
soning over time to improve tolerance to per-
turbations. Consider Regi, who might learn
to navigate optimally in his environment us-
ing neuro-dynamic programming. If the envi-
ronment changes, Regi’s value function may
no longer suggest optimal actions. However,
this is precisely the kind of thing the over-
sight module can notice by, for example, keep-
ing empirical data on discounted rewards ob-
tained from various states. If the empirical
data begin to diverge from the learned value
function, there is either a problem (when
the actual values are lower than expected) or
an opportunity (when the actual values are
higher than expected).

In either case, the system can assess the dis-
crepancies, perhaps to identify regions of the

state space where they occur, and guide a so-
lution into place. The solution might be to
take exploratory actions in those regions of
the state space where the value function is im-
precise, or to simply increase the exploration
probability globally if no coherent region of
the state space is identifiable. In the former
situation, Regi continues to behave optimally
in those states for which the value function is
accurate, limiting exploration, and thus short-
term loss of reward, to those states corre-
sponding to aspects of the environment that
have changed. If all else fails, Regi can ask
for advice, which might take the form of a list
of states paired either with their optimal ac-
tions (“you should turn left in that state”) or
constraints on their values (“the value of that
state is between 10 and 127).
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